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The inflationary model of the universe can explain several of the cosmological 
conundra that are mysteries in the standard hot big bang model. Paul Davies has 
suggcsted that inflation can also explain the second law of thermodynamics, 
which describes the time asymmetry, of the universe. Here I note sevcral 
difficulties with this suggestion, showing how the present inflationary, models 
must assume the arrow of time rather than explaining it. If the second law is 
formulated as a consequence of the hypothesis that there were no long-range 
spatial correlations in the initial state of the universe, it is shown how some of the 
cosmological conundra might be explained even without inflation. But if thc 
ultimate explanation is to include inflation, three essential elements remain to be 
demonstrated which I list. 

The standard hot big bang model of the universe has been very 
successful in explaining the recession of distant galaxies, the cosmic micro- 
wave background radiation, and the abundances of helium and other light 
elements. However, there are a number of mysteries it has not explained: 

(1) The flatness problem (Dicke and Peebles, 1979; Guth, 1981). (Why 
is the energy density of the universe still so near the critical density for the 
spatially flat k---0 Friedmann model? Alternatively, why is gravity a 
dynamically significant force despite the expansion of the universe to at 
least 10 t83 Planck volumes?) 

(2) The homogeneity problem. (Why does the distribution of superclus- 
ters of galaxies appear to be fairly uniform in space?) 

(3) The isotropy problem. (Why do distant galaxies show no statisti- 
cally preferred directions, and why is the microwave background radiation 
isotropic to at least a few parts in 104?) 
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(4) The horizon problem (Rindler, 1956). (How could the universe 
possibly become highly homogeneous and isotropic if the separate regions 
we can now see were never in previous causal contact according to the 
standard model?) 

(5) The galaxy-formation problem. (Why were the perturbations from 
precise homogeneity and isotropy of the right form for galaxies to form?) 

(6) The monopole problem (Zeldovich and Khlopov, 1978; Preskill, 
1979). (Why are monopoles now much less numerous than baryons, though 
grand unified theories (GUTs) tend to have about as many produced?) 

(7) The problem of the second law of the thermodynamics. (Why did 
the universe start out highly ordered, enabling the entropy to increase to 
give an arrow of time despite the fact that all known microscopic dynamical 
laws are time reversible in the sense of being CPT invariant?) 

As a suggestion for solving the horizon and flatness problems, Alan 
Guth (1981) proposed the inflationary universe model in which an early 
"false vacuum" phase with negative pressure equal to energy density 
produced a gravitational repulsion and led to an exponential expansion. All 
of the observed universe would have expanded from one very small region 
and would have had time for causal contact, thereby eliminating the horizon 
problem. If the exponential expansion occurred sufficiently long, the result- 
ing spatial hypersurface would be very large and nearly flat, thereby solving 
the flatness problem if a transition to a radiation phase (positive pressure) 
could occur on such a hypersurface. As a bonus, the inflation could greatly 
dilute the monopoles before baryons are produced, so the monopole prob- 
lem would also be solved. 

The original inflationary model (Guth, 1981) had the difficulty that the 
phase transition ending the inflation occurred in bubbles rather than on a 
constant-time spatial hypersurface, so the resulting universe would not be at 
all homogeneous and isotropic. A new inflationary scenario (Linde, 1982; 
Hawking and Moss, 1982a; Albrecht and Steinhardt, 1982) allowed the 
possibility of a more homogeneous phase transition, though calculations 
(Guth and Pi, 1982; Hawking, 1982a; Bardeen et al., 1983; Hawking and 
Moss, 1982b) indicated that fluctuations would lead to perturbations from 
homogeneity and isotropy much larger than those observed unless the 
effective potential for the matter fields had a rather special form. More 
work is needed to show which models, if any, can solve problems (2), (3), 
and (5) above. 

Paul Davies (1983) has argued that the inflationary universe scenario 
also explains the time asymmetry described by the second law of thermody- 
namics. In his description, the universe starts in an arbitrary state with 
spacetime irregular on all length scales at the Planck time (10 -43 s). 
Expansion cools it below the GUT temperature, whereupon the stress- 
energy tensor is dominated by the false-vacuum contribution proportional 



Can Inflation Explain the Second Law of Thermodynamics? 727 

to the metric (i.e., a perfect fluid with pressure p = - p, the negative of a 
constant energy density p =P0). The situation corresponds to a positive 
effective cosmological constant which leads to gravitational repulsion. The 
resulting exponential expansion of the universe during this inflationary 
de Sitter phase smooths out the initial inhomogeneities and anisotropies, 
thereby greatly decreasing the gravitational entropy density. However, the 
false-vacuum quantum state is unstable and eventually undergoes a phase 
transition to a thermal state. This dumps an enormous amount of entropy 
into the matter fields and also makes the pressure positive ( p = p/3) so that 
the universe no longer expands exponentially but by a power law in time. 
The gravitational entropy is much less than that of the matter but can now 
try to catch up by the clumping of mass to form galaxies, stars, and black 
holes. The continuing expansion also allows the out-of-equilibrium matter 
entropy to increase by nucleosynthesis as hydrogen is converted into helium 
and heavier elements. These two processes cause the present universe to 
have a distinct arrow of time. 

Davies' account is a nice description of the thermodynamic processes 
that occur in the inflationary model, but I would dispute the claim that 
inflation explains the time asymmetry rather than merely assuming it (Page, 
1983a). As an explanation rather than a description of the second law, the 
inflationary model as outlined by Davies appears to be open to at least three 
objections: 

(1) For inflation to get started, it must be assumed that the universe 
cools below the GUT temperature. If the universe in the Planck era is in a 
state of thermal spacetime foam with maximum entropy as Davies assumes, 
it is by no means obvious that this state will evolve into something else or, if 
it does, that this something else will be an expanding universe which is 
described by a temperature which drops below the GUT value. One 
apparently has to invoke the second law or something similar to get into the 
inflationary phase. Alexander Vilenkin (Vilenkin, 1982, 1983) has em- 
phasized this problem and has suggested that. the universe was created from 
"nothing" in a quantum tunneling event via the Hawking-Moss instanton 
(Hawking and Moss, 1982a) from a state with no classical spacetime to a 
state with de Sitter space and the Higgs field at a maximum of its effective 
potential. This would eliminate the question of what initial conditions lead 
to inflation, but it raises the problem of showing that the tunneling is more 
likely to go to an inflationary state rather than some other state. 

(2) It must be assumed that the inhomogeneities and anisotropies are 
decaying rather than growing during the inflationary de Sitter phase. It can 
indeed be shown (Boucher and Gibbons, 1983) that within the cosmological 
event horizon of any future inextendible timelike geodesic, the metric 
asymptotically approaches that of de Sitter space exponentially fast. How- 
ever, this asymptotic analysis does not show what will happen during a 
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finite inflationary phase. If the irregularities are viewed as perturbations of 
a background de Sitter space, the temporal invariance of the latter implies 
that there is no a priori reason for supposing the perturbations get smaller 
with time. Nothing in the CPT-invariant dynamical equations implies this 
time asymmetry. 

Of course, it is natural to assume that the initial perturbations spread 
out with time and get weaker rather than come together and get stronger, 
but this is a thermodynamic assumption. This unexplained time-asymmetric 
assumption is only "natural" because that is how we see nature behave. We 
do not naturally see highly focused incoming radiation, so we postulate a 
time-asymmetric second law of thermodynamics to exclude it. The inflation- 
ary scenario relies on this assumption and is consistent with it, but inflation 
does not explain it. 

(3) In order that the present universe be as homogeneous and isotropic 
as it is observed to be, the phase transition from the inflationary phase must 
produce a large amount of matter entropy without a comparable amount of 
gravitational entropy (i.e., inhomogeneities and anisotropies). This has been 
a problem with the original (Guth, 1981) and with the new (Linde, 1982; 
Hawking and Moss, 1982a: Albrecht and Steinhardt, 1982; Guth and Pi, 
1982: Hawking, 1982a; Bardeen et al., 1983; Hawking and Moss, 1982b) 
inflationary scenario, though it may be possible with a suitable effective 
potential for the matter fields having sufficiently restricted coupling con- 
stants so that the entropy is channeled almost entirely into the matter. 

Thus it does not appear that the inflationary model by itself can 
explain the second law of thermodynamics. One needs an additional as- 
sumption to restrict the possible initial states for the universe. One such 
hypothesis, arising out of a quantum version of the law of conditional 
independence (Penrose and Percival, 1962) is that the universe began 
without long-range spatial correlations in its quantum state. Roughly speak- 
ing, this means that if the universe at some initial hypersurface t - -0  were 
divided into n disjoint spatial regions, the density matrix p(0) for gravita- 
tional and matter fields on the complete hypersurface would be the tensor 
product of the n density matrices Oi(0) for the fields in each region. (Of 
course, this can only be approximately true, for if the fields on opposite 
sides of a boundary between regions were completely uncorrelated, the 
resulting discontinuities in the fluctuating fields would give infinite contri- 
butions to the energy. There is also the uncertainty in quantum gravity of 
what the initial hypersurface is and how to define the different spatial 
regions on it.) 

If the quantum state evolves unitarily, the microscopic entropy on a 
later hypersurface t > 0, 

S ( t )  = - t r o ( t ) l n p ( t )  = S(O) (1 i 
retains its original value, but the coarse-grained entropy, obtained by 
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adding up the individual entropies of the separate regions, increases (at least 
initially) as the correlations that develop between the regions are ignored: 

Scoa~.~(t) = ~ -trpi(t)lnpi(t) > Scoa~.,~(0 ) 
i=1 

(2) 

That is, information is not really lost globally but goes into spatial correla- 
tions which become inaccessible to local observations, so it appears that 
information is lost and that the universe becomes more disordered as the 
second law describes. The absence of initial long-range correlations also 
means it is statistically improbable for fluctuations to be focused so as to 
come together and get much stronger (e.g., as advanced radiation would do). 
Thus this hypothesis would also imply that during an exponentially expand- 
ing phase the irregularities would tend to spread out and get weaker as the 
inflationary scenario assumes. 

However, the hypothesis of no initial long-range spatial correlations 
might explain the observed homogeneity and isotropy of the universe even 
without an inflationary phase (Page, 1983b). If the expectation values of the 
metric and matter fields are homogeneous and isotropic, which seems most 
natural and presumably can be assumed without loss of generality as a 
consequence of a superselection rule associated with coordinate invariance, 
then inhomogeneities and anisotropies represent quantum fluctuations from 
the mean. These are statistically unlikely to have macroscopically coherent 
values over large distances unless there are long-range spatial correlations in 
the quantum state. If such correlations were absent initially, the large-scale 
inhomogeneities and anisotropies could only have developed casually during 
the expansion of the universe. Note that this modification of Hawking's 
"principle of ignorance" (Hawking, 1976) is not subject to Penrose's criti- 
cism (Penrose, 1979, 1981) that inhomogeneous and anisotropic gravita- 
tional fields (e.g., black holes) have higher entropy, for the quantum state is 
not assumed here to maximize the entropy. Indeed, Penrose's suggestion 
(Penrose, 1979, 1981) of an initially vanishing Weyl tensor appears to be a 
consequence (at least on large scales) of the hypothesis of no initial 
long-range correlations. 

If the homogeneity and isotropy of the universe as well as the second 
law of thermodynamics can be explained by this one hypothesis even 
without inflation, one might ask whether the other cosmological conundra 
can likewise be explained without it. Indeed, the flatness problem (Dicke 
and Peebles, 1979; Guth, 1981) might be explained by the weak anthropic 
principle (Carter, 1974) applied to the quantum state of the universe. That 
is, life might be possible only in those components of the universal wave 
function in which space grows large enough and gravitational forces remain 
strong enough for galaxies, stars, and planets to form. Then our observation 



730 Page 

of the very close balance between expansion and gravity would be merely a 
selection effect conditioned by our existence. 

The horizon problem (Rindler, 1956) is not really an independent 
problem but rather one of the difficulties of solving the large-scale homo- 
geneity and isotropy if the distant regions that appear remarkably similar 
were never in causal contact during their past evolution. If the homogene- 
ity and isotropy are explained by the hypothesis of no initial long-range 
correlations, then particle horizons do not necessarily have to be eliminated. 
Indeed, in classical general relativity or even in quantum field theory in a 
classical spacetime metric, the initial conditions are given over an acausal 
hypersurface, so particle horizons are always present in some form or other. 
The situation is less clear in quantum gravity, since the quantum uncertain- 
ties in the light cones make the whole concept of horizons rather fuzzy. 

The galaxy-formation problem has as yet no satisfactory solution in 
any model. The inflationary models are very beautiful for being among the 
first to give concrete predictions for the perturbations. Unfortunately, even 
the new inflationary scenario (Linde, 1982; Hawking and Moss, 1982a; 
Albrecht and Steinhardt, 1982) predicts perturbations far larger than those 
observed unless the effective potential for the matter fields takes a special 
form (Guth and Pi, 1982; Hawking, 1982a; Bardeen et al., 1983; Hawking 
and Moss, 1982b). It is not yet known whether an initial state without 
long-range spatial correlations can lead to the right perturbations in a 
noninflationary model. 

The monopole problem (Zeldovich and Khlopov, 1978; Preskill, 1979) 
is one problem for which inflation has so far appeared to be the most 
attractive solution. This problem arises because of the assumption that the 
Higgs field was spatially uncorrelated initially, which leads to knots in the 
field when the internal symmetry was spontaneously broken in an indepen- 
dent manner in each causally disjoint region of the universe (Einhorn et al., 
1980; Guth and Tye, 1980). Except for some rather contrived models in 
which monopole-antimonopole pairs becom~ confined by flux tubes 
(Lazarides and Shaft, 1980; Linde, 1980; Langacker and Pi, 1980; Bais and 
Langacker, 1982), it appears difficult to get enough such pairs to annihilate 
to be consistent with the upper bounds today (Zeldovich and Khlopov, 
1978; Preskill, 1979; Goldman et al., 1981; Fry, 1981; Dicus et al., 1982; 
Page, 1983b), unless the universe is inflated by a very large factor to dilute 
the monopoles below the current upper limits. Of course, it might simply be 
that the grand unified theories are wrong and that there are no monopoles 
to be produced, but then we would have given up the present explanation 
for the quantization of electric charge and for the excess of baryons over 
antibaryons. 

If many (though perhaps not all) of the cosmological conundra can be 
solved by the hypothesis that the initial quantum state of the universe had 
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no long-range spatial correlations, we still might want a simpler hypothesis 
to explain this one and pin down more precisely the initial state. One bold 
new approach to this is Hawking's idea (Hawking, 1982b; Hartle and 
Hawking, 1983; Hawking, 1983) that the state on any closed spatial 
hypersurface is given by a path integral over all compact Euclidean 4-geom- 
etries (i.e., positive-definite four-dimensional metrics) and matter fields 
bounding the three-dimensional hypersurface in question. This proposal 
predicts a unique quantum state for the universe, which, if correct, would 
solve the mystery of the second law of thermodynamics and the other 
cosmological problems, once the correct dynamical laws (i.e., the action in 
the path integral) are known. Of course, it is far beyond our present 
computational powers to calculate this universal wave function for any 
realistic candidate for the action, but it may be done approximately 
for certain simple minisuperspace models (Hartle and Hawking, 1983; 
Hawking, 1983). If these approximately soluble models can be made 
sophisticated enough, they may be able to test whether Hawking's proposal 
can give the qualitative behavior of no long-range spatial correlations at 
early times or other attributes ascribed to the second law. 

It is conceivable that if some such proposal can give a unique state for 
the universe, it may include an inflationary phase which plays a role rather 
like what Davies envisages. However, there seem to be three essential 
elements to be demonstrated for this to work: 

(1) The quantum state should make it highly probable for the universe 
to start out small (say in Planck volumes when the energy density, or some 
such variable representing time but not conjugate to the volume, has the 
Planck value) and then get very large. But if it is more probable for 
the universe to start off small, why is it not simply more probable for the 
universe never to get very large? We might invoke the weak anthropic 
principle (Carter, 1974) to say that we can only observe those components 
of the quantum state in which the universe does get very large, but then we 
have the alternative problem of explaining why in these components it was 
more probably once small (i.e., deflated) rather than always being large in 
Planck units (as for example is the standard hot big bang model if cut off at 
the Planck time). There appear to be far more configurations available in 
the classical phase space, at least, in which a space-time is always large as 
measured on Cauchy spatial hypersurfaces whose extrinsic curvature is 
everywhere bounded by the Planck value. 

(2) It should be shown that when small, the universe necessarily has low 
entropy. A conjecture phrased in the language of classical general relativity 
but using Planck units would be that on any spatial hypersurface the 
entropy is bounded by the inequality 

1/4 3/4 
S < f (maxlR.t~vn[) V (3) 
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where f is the number  of quantum field species (including gravity), R,,~v 8 
are the Riemann curvature components in the set of orthonormal frames 
whose timelike unit vectors are normal to the hypersurface, and V is the 
3-volume of the hypersurface. (This inequality was chosen so as to be 
approximately saturated for radiation-dominated F r i edmann-Robe r t son -  
Walker models, in which the right-hand side stays approximately constant. 
Alternately, in an anisotropic collapse the right-hand side gets arbitrarily 
large if one lets the hypersurface get sufficiently near the singularity, thus 
allowing the bound to be satisfied even if the gravitational entropy grows 
indefinitely, provided it does not grow too fast.) However, a similar conjec- 
ture in quantum gravity would require a suitable replacement of the 
four-dimensional curvature components.  One would also need a definition 
of entropy that can allow it to increase, A quantity which grows with some 
measure of the spatial correlations of the quantum state, such as the 
coarse-grained entropy in equation (2), might be suitable, but there is the 
question of how to define such a quantity precisely. 

(3) The inflationary phase which expands the universe from a small to a 
large volume should be shown to end in a phase transition which increases 
the matter entropy enormously without increasing the gravitational entropy 
by a comparable amount. As discussed above, this may require the action to 
have a special form. 

It is not yet obvious that these three elements will necessarily occur in 
the correct model for the universe, but if they can be shown to do so, then 
we might have an inflationary explanation for the second law of thermody- 
namics. Alternatively, a model giving the state of the universe might explain 
the second law and hence the arrow of time even without an inflationary 
phase. 

A C K N O W L E D G M E N T S  

The ideas expressed here have arisen out of conversations and correspondence with many 
pcoplc, including Marek Demianski, Gary Gibbons, Alan Guth, Stcphcn Hawking, Andr6 
Linde, Baidyanath Misra, Roger Penrose, llya Prigogine, Alexie Starobinsky, Alexander 
Vilenkin, Ethan Vishniac, Steven Wcinberg, and John Wheeler. This work was supported in 
part by grants from the NSF (PHY-8117464 and PHY-8205717) and the Alfred P. Sloan 
Foundation. 

REFERENCES 

Albrecht, A., and Steinhardt, P. J. (1982). Phys. Rev. Lett., 48, 1220-1223. 
Bais, F. A., and Langacker, P. (1982). Nucl. Plo's., B197, 520-532. 
Bardcen. J. M., Steinhardt, P. J., and Turner, M. S. (1983). Pttvs. Bet'. D, 28, 679-693. 



Can Inflation Explain the Second Law of Thermodynamics? 733 

Boucher, W., and Gibbons, G. W. (1983). In The 1~2,ry Ear!v Unil,erse, G. W. Gibbons, S. W. 
Hawking, and S. T. C. Siklos, eds. Cambridge University Press, Cambridge. 

Carter, B. (1974). In IA U Symposium No. 63: Confrontation of Cosmological Theories with 
Ohserl,ational Data, M. S. Longair, ed. Reidel, Dordrccht. 

Davies, P. C. W. (1983). Nature, 301,398-400. 
Dickc, R. H. and Peebles, P. J. E. (1979). In General Relatit,itv: An Einstein Centenarv Sttrt,t T, 

S. W. Hawking and W. Israel, eds. Cambridge University Prcss, Cambridge. 
Dicus, D. A., Page, D. N., and Teplitz, V. L. (1982). Phys. Ret'. D, 26, 1306-1316. 
Einhorn M. B., Stcin, D. L., and Toussaint, D. Phys. Re~,. D, 21, 3295-3298. 
Fry., J. N. (1981). Astroplg's. J. Lett., 246, L93-L97. 
Goldman, T., Kolb, E. W., and Toussaint, D. (1981). Pt~vs. Ree. D, 23, 867-875. 
Guth, A. H. (1981). Phys. Ret,. D, 23, 347-356. 
Guth, A. H. and Pi, S.-Y. (1982). Phys. Re~,. Lett., 49, 1110-1113. 
Guth, A. H., and Tye, S.-H. H. (1980). Phys. Ret,. Lett. 44, 631-635. 963. 
Hartle, J. B., and Hawking, S. W. (1983). Pl~vs. Ret,. D, 2,8, 2960-2975. 
Hawking, S. W. (1976). Pl~vs. Ree. D, 14, 2460-2473. 
Hawking, S. W., (1982a) Phys. Lett., 115B, 295-297. 
Hawking, S. W. (1982b). In Astrophysical Cosmology: Proceedings of the Study Week on 

Cosmology and Fundamental Physics', H. A. B~ck, G. V. Coyne, and M. S. Longair, eds. 
Pontifica Academia Scientiarum, Vatican. 

Hawking, S. W. (1983). Lectures at the NATO Summer School on Relativity, Groups, and 
Topology in Les Houches, France, 21 June-4 August 1983, and Natl. PIlvs. B, in press. 

Hawking, S. W., and Moss, I. G. (1982a) Pl~t's. Lett., IIOB, 35-38. 
Hawking, S. W., and Moss, I. G. (1982b). University of Cambridge, preprint. 
Langacker, P., and Pi, S.-Y. (1980). Phys. Re~,. Lett., 45, 1-4. 
Lazarides, G., and Shaft, Q. (1980). Phys. Left., 94B, 149-152. 
Linde, A. D. (1980). Phys. Lett., 96B, 293-296. 
Linde, A. D. (1982). Pl~vs. Lett., 108B, 389-393. 
Page, D. N. (1983a). Nature, 304, 39-41. 
Page, D. N. (1983b). In The Veo' Early Uni~,erse, G. W. Gibbons, S. W. Hawking, and S. T. C. 

Siklos, eds. Cambridge University Press, Cambridge. 
Penrose, O., and Percival, I. C. (1961). Proc. Phys. Sot., 79, 605-616. 
Penrose, R. (1979). In General Relatioitv: An Einstein Centenary Surt'c~v, S. W. Hawking and W. 

Israel, eds. Cambridge University Press, Cambridge. 
Penrose, R. (1981). In Quantum Grat,i(v 2: A Second O.~ford Symposium, C. J. Isham, R. 

Penrosc, and D. W. Sciama, eds. Clarendon Press, Oxford. 
Preskill, J. P. (1979). Phys. Ret,. Lett., 43, 1365-1,368. 
Rindler, W. (1956). Mon. Not. R. Astron. Soe., 116, 662-677. 
Vilenkin, A. (1982). Phys. Lett., II7B, 25-28. 
Vilenkin, A. (1983). Phys. ReL,. D27, 2848-2855. 
Zeldovich, Ya. B. and Khlopov, M. Yu. (1978). Ptr Lett., 79B, 239-241. 


